organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

9,9-Bis(4-methoxyphenyl)-9*H*-cyclopenta[2,1-*b*:3,4-*b*']dipyridine

Katsuhiko Ono,^a* Masaaki Tomura^b and Katsuhiro Saito^a

^aDepartment of Materials Science and Engineering, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan, and ^bInstitute for Molecular Science, Myodaiji, Okazaki 444-8585, Japan

Correspondence e-mail: ono.katsuhiko@nitech.ac.jp

Received 20 October 2007; accepted 3 November 2007

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.006 Å; R factor = 0.091; wR factor = 0.147; data-to-parameter ratio = 9.8.

The title compound, $C_{25}H_{20}N_2O_2$, was synthesized by the Friedel–Crafts reaction of 4,5-diazafluoren-9-one with anisole in the presence of H_2SO_4 . The molecule is located on a twofold rotation axis. The 4,5-diazafluorene (cyclopenta[2,1-b:3,4-b']dipyridine) ring system is planar. The molecular packing is characterized by a columnar structure along the *c* axis. The methoxyphenyl groups overlap each other in the column. The interplanar distance and the centroid–centroid distances between the benzene rings are 3.87 (1) and 4.07 (1) Å, respectively. The 4,5-diazafluorene units form a coil-like structure.

Related literature

The title compound was reported to be an electron-transporting and hole-blocking material in the study of electroluminescent (EL) devices (Ono *et al.*, 2004). For related literature on molecular structures including the 4,5-diazafluorene ring system, see: Ono *et al.* (2007); Riklin *et al.* (1999); Fun *et al.* (1995); Lu *et al.* (1995, 2000).

Experimental

Crystal data

 $\begin{array}{l} C_{25}H_{20}N_2O_2\\ M_r = 380.45\\ Tetragonal, P4_{1}2_{1}2\\ a = 11.607 \ (3) \ \text{\AA}\\ c = 14.101 \ (4) \ \text{\AA}\\ V = 1899.7 \ (8) \ \text{\AA}^3 \end{array}$

Data collection

Rigaku/MSC Mercury CCD diffractometer Absorption correction: none 19259 measured reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.091$ 133 parameters $wR(F^2) = 0.147$ H-atom parameters constrainedS = 1.44 $\Delta \rho_{max} = 0.16 \text{ e} \text{ Å}^{-3}$ 1302 reflections $\Delta \rho_{min} = -0.15 \text{ e} \text{ Å}^{-3}$

Z = 4

Mo $K\alpha$ radiation

 $0.45 \times 0.15 \times 0.15$ mm

1302 independent reflections

1241 reflections with $I > 2\sigma(I)$

 $\mu = 0.09 \text{ mm}^{-1}$

T = 296 (1) K

 $R_{\rm int} = 0.075$

Data collection: *CrystalClear* (Rigaku/MSC, 2001); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SIR2004* (Burla *et al.*, 2005); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *PLATON* (Spek, 2003) and *Mercury* (Macrae *et al.*, 2006); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

This work was supported by a Grant-in-Aid (Nos. 17750037 and 19550034) from the Ministry of Education, Culture, Sports, Science and Technology, Japan. We thank the Instrument Center of the Institute for Molecular Science for the Xray structure analysis.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2226).

References

- Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Fun, H.-K., Sivakumar, K., Zhu, D.-R. & You, X.-Z. (1995). Acta Cryst. C51, 2076–2078.
- Lu, Z.-L., Duan, C.-Y., Tian, Y.-P., You, X.-Z., Fun, H.-K. & Sivakumar, K. (1995). *Acta Cryst.* C**51**, 2078–2080.
- Lu, Z.-L., Xiao, W., Chen, Z.-N., Gong, X.-Y., Shanmuga Sundara Raj, S., Razak, I. A. & Fun, H.-K. (2000). Acta Cryst. C56, 1017–1018.
- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. **39**, 453–457.
- Ono, K., Nagano, K., Suto, M. & Saito, K. (2007). Heterocycles, 71, 799-804.
- Ono, K., Yanase, T., Ohkita, M., Saito, K., Matsushita, Y., Naka, S., Okada, H. & Onnagawa, H. (2004). *Chem. Lett.* **33**, 276–277.
- Rigaku/MSC (2001). CrystalClear. Version 1.3. Rigaku Corporation, Tokyo, Japan.
- Riklin, M., von Zelewsky, A., Bashall, A., McPartlin, M., Baysal, A., Connor, J. A. & Wallis, J. D. (1999). *Helv. Chim. Acta*, 82, 1666–1680.

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13.

supplementary materials

Acta Cryst. (2007). E63, o4612 [doi:10.1107/S1600536807055626]

9,9-Bis(4-methoxyphenyl)-9H-cyclopenta[2,1-b:3,4-b']dipyridine

K. Ono, M. Tomura and K. Saito

Comment

The title compound, (I), was prepared and investigated for electron-transporting layers in the study of organic electroluminescent (EL) devices (Ono *et al.*, 2004). Phosphorescent EL devices fabricated by (I) and Ir(ppy)₃ demonstrated high external quantum efficiencies due to the high hole-blocking ability of (I). One of the phosphorescent EL devices exhibited a maximum external quantum efficiency of 18%. This value is close to the theoretical limit about 20% from simple classical optics. With regard to the electron-transporting and hole-blocking abilities, the molecular arrangement of (I) has attracted considerable attention. In this paper, we report the crystal structure of (I).

The compound, (I), crystallizes in the $P4_12_12$ space group and is located on a twofold rotation axis. The molecular structure is shown in Fig. 1. The bond lengths and angles are all within the expected ranges. The 4,5-diazafluorene (cyclopenta[2,1-*b*:3,4-*b*']dipyridine) ring system and the two methoxyphenyl groups are planar. The crystal structure is characterized by a columnar structure along the *c* axis, as shown in Fig. 2. The methoxyphenyl groups overlap each other in the column. The interplanar distance and the centroid-centroid distance between the benzene rings (C7—C12) at (*x*, *y*, *z*) and (–*y*, –*x*, –*z* + 3/2) are 3.87 (1) and 4.07 (1) Å, respectively. The diazafluorene moieties are arranged to form a coil-like structure.

Experimental

The title compound (I) was prepared as follows: Concentrated sulfuric acid (1.37 g, 14.0 mmol) was added dropwise to a mixture of 4,5-diazafluoren-9-one (0.50 g, 2.8 mmol) and anisole (1.19 g, 11.0 mmol). The mixture was stirred at 65 °C for 5 h. The red mixture was poured into water (50 ml). The aqueous solution was neutralized with aqueous NaOH and was extracted with dichloromethane (50 ml × 3). The organic solution was dried over Na₂SO₄ and concentrated. The residue was treated with active carbon and recrystallized from toluene to afford the compound of (I) (0.99 g, 95%) as colorless needles. Physical data for (I): m.p. 548–549 K; IR (KBr, cm⁻¹): 2949, 2830, 1562, 1507, 1402, 1250, 1179, 1040, 814, 747, 592, 513; ¹H NMR (CDCl₃, δ p.p.m.): 3.76 (s, 6H), 6.77 (d, J = 8.8 Hz, 4H), 7.08 (d, J = 8.8 Hz, 4H), 7.27 (dd, J = 7.8, 4.7 Hz, 2H), 7.74 (d, J = 7.8, 1.4 Hz, 2H), 8.72 (d, J = 4.7, 1.4 Hz, 2H); ¹³C NMR (CDCl₃, δ p.p.m.): 55.2, 60.2, 113.9, 123.4, 128.9, 133.5, 135.7, 146.2, 150.0, 157.4, 158.7; MS (EI): m/z 380 (M^+), 365, 273. Anal. Calcd for C₂₅H₂₀N₂O₂: C, 78.93; H, 5.30; N, 7.36. Found: C, 78.72; H, 5.27; N, 7.16. Colorless crystals of (I) suitable for X-ray analysis were grown from a toluene solution.

Refinement

All the H atoms were placed in geometrically calculated positions [C—H = 0.93 (aromatic) or 0.96 (methyl) Å] and refined using a riding model, with $U_{iso}(H) = 1.2U_{eq}(C)$ (aromatic) or $1.5U_{eq}(C)$ (methyl).

Figures

Fig. 1. The molecular structure of (I), with atom labels and 50% probability displacement ellipsoids for non-H atoms and H atoms are shown as small spheres of arbitrary radii [symmetry code: (i) y, x, -z + 1].

Fig. 2. The packing diagram of (I) stacked along the c axis.

9,9-Bis(4-methoxyphenyl)-9H-cyclopenta[2,1 - b:3,4 - b']dipyridine

Crystal data	
$C_{25}H_{20}N_2O_2$	Z = 4
$M_r = 380.45$	$F_{000} = 800$
Tetragonal, P4 ₁ 2 ₁ 2	$D_{\rm x} = 1.33 {\rm ~Mg~m}^{-3}$
Hall symbol: P 4abw 2nw	Melting point: 548 K
a = 11.607 (3) Å	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
b = 11.607 (3) Å	Cell parameters from 4891 reflections
c = 14.101 (4) Å	$\theta = 3.4 - 27.5^{\circ}$
$\alpha = 90^{\circ}$	$\mu = 0.09 \text{ mm}^{-1}$
$\beta = 90^{\circ}$	T = 296 (1) K
$\gamma = 90^{\circ}$	Block, colorless
$V = 1899.7 (8) \text{ Å}^3$	$0.45 \times 0.15 \times 0.15 \text{ mm}$

Data collection

Rigaku/MSC Mercury CCD 1302 diffractometer	independent reflections
Radiation source: Rotating Anode 1241	reflections with $I > 2\sigma(I)$
Monochromator: Graphite Monochromator $R_{\text{int}} =$	= 0.075
Detector resolution: 14.6199 pixels mm^{-1} θ_{max}	= 27.5°
$T = 296(1) \text{ K} \qquad $	= 3.4°
$\varphi \& \omega$ scans $h = -$	13→15
Absorption correction: none $k = -$	12→15
19259 measured reflections $l = -2$	17→18

Refinement

Refinement on F^2	H-atom parameters constrained
Least-squares matrix: full	$w = 1/[\sigma^2(F_0^2) + (0.0183P)^2 + 1.2171P]$

	where $P = (F_0^2 + 2F_c^2)/3$
$R[F^2 > 2\sigma(F^2)] = 0.091$	$(\Delta/\sigma)_{max} < 0.001$
$wR(F^2) = 0.147$	$\Delta \rho_{max} = 0.16 \text{ e} \text{ Å}^{-3}$
<i>S</i> = 1.44	$\Delta \rho_{min} = -0.15 \text{ e } \text{\AA}^{-3}$
1302 reflections	Extinction correction: none
133 parameters	
Primary atom site location: structure-invariant direct methods	

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring

Special details

sites

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C1	0.3328 (4)	0.1272 (4)	0.6615 (3)	0.0523 (12)
C2	0.2771 (4)	0.0298 (4)	0.6906 (3)	0.0546 (12)
C3	0.1809 (4)	-0.0082 (4)	0.6424 (3)	0.0508 (11)
C4	0.1441 (4)	0.0559 (3)	0.5655 (3)	0.0385 (9)
C5	0.2069 (3)	0.1531 (4)	0.5412 (3)	0.0385 (9)
C6	0.0393 (3)	0.0393 (3)	0.5000	0.0425 (13)
C7	-0.0704 (3)	0.0456 (4)	0.5597 (3)	0.0420 (10)
C8	-0.1053 (5)	-0.0487 (4)	0.6134 (4)	0.0706 (16)
C9	-0.1985 (4)	-0.0430 (4)	0.6750 (4)	0.0669 (15)
C10	-0.2601 (4)	0.0560 (4)	0.6819 (3)	0.0456 (10)
C11	-0.2274 (4)	0.1509 (4)	0.6310 (3)	0.0525 (12)
C12	-0.1330 (4)	0.1456 (4)	0.5712 (3)	0.0471 (10)
C13	-0.3879 (4)	-0.0191 (5)	0.7990 (3)	0.0688 (15)
N1	0.3003 (3)	0.1914 (3)	0.5868 (2)	0.0472 (9)
01	-0.3561 (3)	0.0714 (3)	0.7388 (2)	0.0615 (9)
H1	0.3973	0.1507	0.6955	0.063*
H2	0.3041	-0.0110	0.7428	0.066*
Н3	0.1421	-0.0746	0.6609	0.061*
H8	-0.0650	-0.1176	0.6079	0.085*
Н9	-0.2185	-0.1067	0.7114	0.080*
H11	-0.2688	0.2191	0.6366	0.063*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

H12	-0.1111	0.2113	0.5380	0.056*
H13A	-0.4144	-0.0831	0.7618	0.103*
H13B	-0.4486	0.0061	0.8404	0.103*
H13C	-0.3227	-0.0424	0.8362	0.103*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.049 (3)	0.062 (3)	0.046 (2)	0.006 (2)	-0.007 (2)	-0.008 (2)
C2	0.069 (3)	0.054 (3)	0.041 (2)	0.015 (3)	-0.004 (2)	0.001 (2)
C3	0.064 (3)	0.040 (2)	0.049 (2)	-0.002 (2)	0.006 (2)	0.001 (2)
C4	0.045 (2)	0.033 (2)	0.0371 (19)	0.0025 (18)	0.0056 (18)	-0.0065 (17)
C5	0.038 (2)	0.039 (2)	0.0389 (18)	0.0002 (19)	0.0024 (17)	-0.0075 (18)
C6	0.0374 (19)	0.0374 (19)	0.053 (3)	-0.005 (3)	0.004 (2)	-0.004 (2)
C7	0.041 (2)	0.039 (2)	0.046 (2)	-0.0097 (18)	0.0084 (19)	-0.0049 (19)
C8	0.074 (4)	0.034 (3)	0.104 (4)	0.002 (2)	0.043 (3)	-0.012 (3)
C9	0.070 (3)	0.042 (3)	0.088 (4)	-0.012 (3)	0.036 (3)	-0.004 (3)
C10	0.041 (2)	0.050 (3)	0.046 (2)	-0.003 (2)	0.0061 (19)	-0.010 (2)
C11	0.053 (3)	0.048 (3)	0.056 (2)	0.014 (2)	0.009 (2)	0.006 (2)
C12	0.047 (3)	0.046 (2)	0.048 (2)	0.008 (2)	0.009 (2)	0.009 (2)
C13	0.069 (4)	0.076 (4)	0.061 (3)	-0.009 (3)	0.022 (3)	-0.005 (3)
N1	0.045 (2)	0.047 (2)	0.0491 (19)	-0.0044 (17)	-0.0041 (17)	-0.0074 (18)
01	0.054 (2)	0.063 (2)	0.0671 (19)	0.0007 (18)	0.0269 (18)	0.0025 (18)

Geometric parameters (Å, °)

1.344 (6)	С7—С8	1.391 (6)
1.366 (7)	C8—C9	1.389 (6)
0.9300	С8—Н8	0.9300
1.380 (6)	C9—C10	1.357 (6)
0.9300	С9—Н9	0.9300
1.381 (6)	C10—C11	1.368 (6)
0.9300	C10—O1	1.384 (5)
1.386 (6)	C11—C12	1.384 (6)
1.540 (5)	C11—H11	0.9300
1.336 (5)	C12—H12	0.9300
1.458 (8)	C13—O1	1.401 (5)
1.528 (5)	C13—H13A	0.9600
1.528 (5)	С13—Н13В	0.9600
1.540 (5)	С13—Н13С	0.9600
1.379 (5)		
124.1 (4)	C9—C8—C7	121.9 (5)
118.0	С9—С8—Н8	119.0
118.0	С7—С8—Н8	119.0
120.0 (4)	С10—С9—С8	119.7 (5)
120.0	С10—С9—Н9	120.1
120.0	С8—С9—Н9	120.1
117.7 (4)	C9—C10—C11	119.8 (4)
	1.344(6) 1.366(7) 0.9300 1.380(6) 0.9300 1.381(6) 0.9300 1.386(6) 1.540(5) 1.528(5) 1.528(5) 1.528(5) 1.540(5) 1.379(5) 124.1(4) 118.0 118.0 120.0(4) 120.0 120.0 117.7(4)	1.344(6) $C7C8$ $1.366(7)$ $C8C9$ 0.9300 $C8H8$ $1.380(6)$ $C9C10$ 0.9300 $C9H9$ $1.381(6)$ $C10C11$ 0.9300 $C10O1$ $1.386(6)$ $C11C12$ $1.540(5)$ $C11H11$ $1.336(5)$ $C12H12$ $1.458(8)$ $C13O1$ $1.528(5)$ $C13H13A$ $1.528(5)$ $C13H13B$ $1.540(5)$ $C13H13C$ $1.379(5)$ $C13H13C$ 118.0 $C9C8C7$ 118.0 $C7C8H8$ $120.0(4)$ $C10C9C8$ 120.0 $C10C9H9$ 120.0 $C8C9H9$ $17.7(4)$ $C9C10C11$

С2—С3—Н3	121.2	C9—C10—O1	125.1 (4)
С4—С3—Н3	121.2	C11—C10—O1	115.1 (4)
C3—C4—C5	118.1 (4)	C10-C11-C12	120.3 (4)
C3—C4—C6	130.3 (4)	C10-C11-H11	119.9
C5—C4—C6	111.6 (3)	C12—C11—H11	119.9
N1—C5—C4	125.3 (4)	C7—C12—C11	121.7 (4)
N1	126.0 (2)	С7—С12—Н12	119.1
C4—C5—C5 ⁱ	108.7 (2)	С11—С12—Н12	119.1
C7—C6—C7 ⁱ	112.5 (5)	O1—C13—H13A	109.5
C7—C6—C4 ⁱ	113.4 (2)	O1—C13—H13B	109.5
C7 ⁱ —C6—C4 ⁱ	108.8 (2)	H13A—C13—H13B	109.5
C7—C6—C4	108.8 (2)	O1—C13—H13C	109.5
C7 ⁱ —C6—C4	113.4 (2)	H13A—C13—H13C	109.5
C4 ⁱ —C6—C4	99.3 (4)	H13B—C13—H13C	109.5
C12—C7—C8	116.5 (4)	C5—N1—C1	114.9 (4)
C12—C7—C6	122.9 (4)	C10—O1—C13	117.9 (4)
C8—C7—C6	120.3 (4)		
N1—C1—C2—C3	-0.2 (7)	C4 ⁱ —C6—C7—C8	171.8 (4)
C1—C2—C3—C4	-0.3 (6)	C4—C6—C7—C8	-78.7 (5)
C2—C3—C4—C5	0.8 (6)	C12—C7—C8—C9	0.3 (8)
C2—C3—C4—C6	-177.8 (4)	C6—C7—C8—C9	174.1 (4)
C3—C4—C5—N1	-0.8 (6)	C7—C8—C9—C10	1.8 (8)
C6—C4—C5—N1	178.0 (3)	C8—C9—C10—C11	-2.5 (8)
C3—C4—C5—C5 ⁱ	-180.0 (4)	C8—C9—C10—O1	178.3 (4)
C6-C4-C5-C5 ⁱ	-1.2 (5)	C9—C10—C11—C12	1.2 (7)
C3—C4—C6—C7	60.3 (5)	O1—C10—C11—C12	-179.6 (4)
C5—C4—C6—C7	-118.3 (4)	C8—C7—C12—C11	-1.8 (7)
C3—C4—C6—C7 ⁱ	-65.7 (5)	C6—C7—C12—C11	-175.4 (4)
C5-C4-C6-C7 ⁱ	115.7 (4)	C10—C11—C12—C7	1.1 (7)
C3—C4—C6—C4 ⁱ	179.1 (5)	C4—C5—N1—C1	0.3 (6)
C5-C4-C6-C4 ⁱ	0.5 (2)	C5 ⁱ —C5—N1—C1	179.4 (5)
C7 ⁱ —C6—C7—C12	-138.8 (5)	C2-C1-N1-C5	0.2 (6)
C4 ⁱ —C6—C7—C12	-14.8 (6)	C9—C10—O1—C13	4.7 (7)
C4—C6—C7—C12	94.7 (4)	C11—C10—O1—C13	-174.5 (4)
C7 ⁱ —C6—C7—C8	47.8 (4)		

Symmetry codes: (i) y, x, -z+1.

